Optimal Design of Multiport DC/DC Converters for Hybrid Systems Egi Nazeraj, Omar Hegazy and Joeri Van Mierlo

MOBI: Mobility, Logistics and Automotive Technology Research Centre VRIJE UNIVERSITEIT BRUSSEL (VUB), Pleinlaan 2, 1050 Brussel - Belgium

IMIPC

 V_{fc}

Introduction

Hybridization enhances system performances by combining the advantages of different sources:

	FC	Battery	UC	Genset
Efficiency	+	++	++	-
Energy density	+	_		++

Higher efficiency

Reliable topology

Compact packaging

Complex Control

X DCM at higher power

 \mathbf{X} EMC \rightarrow @ DCM

Power density	0	0	++	++
Dynamic performances	-	0	++	++
Cost	_	0	_	+
Emissions	+	++	++	
Noise	++	++	++	
Fueling time	++	-	_	++
Availability of the		++	++	_
energy source				
Infrastructure		0	0	++

A Power Electronic Interface is required to regulate the voltage source to the output voltage level. A solution is to combine all the different sources to a common power converter (**Multi-Port Converter**).

Fig. 1 BEV Powertrain with LV battery and UC (Hegazy et al., 2014).

Fig. 2 Interleaved Multiple-Input Port Converter (Hegazy et al., 2011).

Interleaving phases has an impact on the input current ripple

For a single phase inductor the maximum input current ripple occurs at D=0.5. With the interleaved technique, the maximum current is decreased, but the peaks are shifted in the duty ratio region.

Centralized Control

➤ Weight & Cost?

Less input current ripple is achieved

Due to a proper shifting of phases the input current ripple is decreased. However, the harmonics have a higher frequency which may cause EMC issues.

What about with SiC/GaN technology?

SiC/GaN technology allows to achieve higher frequency with a consequent current ripple decrease. A design optimization is required to evaluate the best trade-off in terms of inductor

size, number of phases and switching frequency.

Multi-Objectives Genetic Algorithm Design Optimization

Conclusions

- Several Multi-Port Converter topologies have been investigated to find out the best topology for automotive applications.
- The Single Port DC/DC converter has been analysed with a focus on the impact of the Interleaving technique on the input current ripple.
- A Multi-Objectives Genetic Algorithm Design Optimization is performed with the aid of Ap values in inductors' datasheets.

Future work

Detailed Losses model

Current FEM model uses empirical losses law based on

Epstein test (sine wave current).

- Inductors for DC/DC converters bears high DC bias current that will saturate the material and the empirical losses are not more valid.
- DC bias current tests.

Contact

egi.nazeraj@vub.ac.be [T] +32 (0)2 629 38 04 [M] +32 (0)486 32 08 25 Electrical Engineering and Energy Technology (ETEC) – http://etec.vub.ac.be

Mobility, Logistics and Automotive technology research centre (MOBI) http://mobi.vub.ac.be

